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Abstract
We consider the problem of photon creation from vacuum or thermal
states inside a cavity with periodical time-dependent conductivity of a thin
semiconductor boundary layer, simulating periodical displacements of the wall.
Our approach is based on the consistent model of a quantum-damped harmonic
oscillator with arbitrary time-dependent frequency and damping coefficients in
the framework of the Heisenberg–Langevin equations with two noncommuting
delta-correlated noise operators. We calculate the rate of photon generation
under the resonance conditions, taking into account the internal dissipation
inside the semiconductor. This rate depends mainly on two parameters: the
total intensity of the laser pulse and the recombination time of photo-excited
carriers in the semiconductor slab (for fixed mobility of carriers and geometry).
Optimal values of these parameters and dimensions of the cavity are found for
the TE and TM modes. The influence of temperature and detuning from strict
resonance is analysed.

PACS numbers: 12.20.Fv, 42.50.Pq, 42.50.Lc, 42.50.Nn

1. Introduction

After Moore’s paper [1], the fascinating effect of photon creation from vacuum due to the
motion of boundaries was the subject of many theoretical studies (extensive lists of publications
can be found in [2, 3]). Since this is a relativistic effect of the second order, its experimental
verification is a very difficult problem. For this reason, many authors studied the conditions
of resonance amplification of the vacuum fluctuations in cavities with oscillating walls [4–
13]. The theoretical prediction is that under the conditions of strict resonance, the number of
photons created from the vacuum state in the selected mode of an closed ideal cavity is given
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by the typical parametric resonance formula

N (res)
n = sinh2(nν), (1)

where n is the number of oscillations made by the walls, and the small coefficient ν is
proportional to the amplitude value of the relative shift of the mode eigenfrequency due to
the change �L(t) of the distance L between the walls. Very roughly, ν ∼ max|�L/L|. If
the necessary conditions can be maintained during the time corresponding to n > nc ∼ ν−1

oscillations, then Nn exceeds the unit value and grows exponentially with the further increase
of n, so the photons are really created and can be detected using various schemes.

However, it is still unclear how to excite oscillations of the wall surfaces with high
amplitudes at the resonance frequencies in the GHz domain, which correspond to cavities
with dimensions of the order of a few centimetres (leaving aside Schwinger’s dream [14] of
creating visible photons). Since internal stresses inside the oscillating wall are proportional
to the square of the frequency, the parameter ν cannot exceed a value of the order 10−8 [6].
This extremely small value imposes very hard restrictions on the quality factor of the cavity
and the admissible deviations from the exact resonance frequency.

These restrictions can be significantly softened in the scheme of the experiment recently
proposed by the group of the University of Padua [15]. The main idea is to use, instead of a
real moving metallic surface, an effective electron-hole ‘plasma mirror’, which can be created
periodically on the surface of a semiconductor slab by illuminating it with a sequence of
powerful femtosecond laser pulses. If the interval between pulses exceeds the recombination
time of carriers in the semiconductor, the highly conducting layer will periodically appear
and disappear on the surface of the semiconductor, thus simulating periodical displacements
of the boundary. Using semiconductor slabs with thickness of the order of 1 mm, one
can hope to obtain the values ν ∼ |(�L)eff/L| ∼ 10−2, reducing by several orders of
magnitude the number of oscillations of the boundary necessary to produce photons in the
cavity, and relaxing the requirements for the Q-factor of the cavity and the admissible detuning
from the exact resonance. In particular, one could expect that several hundred oscillations
(or, equivalently, laser pulses) would be sufficient to generate a detectable number of
microwave quanta in the cavity.

It appears, however, that the simple formula (1) overestimates the number of created
photons in the case involved, because it does not take into account inevitable losses inside
the semiconductor slab during the excitation–recombination process. This is the immediate
consequence of the fact that the dielectric permeability ε(x) of the semiconductor medium is
a complex function: ε = ε1 + iε2, where ε2 = 2σ/f0, σ and f0 being the conductivity (in CGS
units) and frequency in Hz, respectively. Good conductors have ε2 ∼ 108 at microwave
frequencies, which is essentially bigger than ε1 ∼ 1–10. Although ε2 is negligibly small in the
non-excited semiconductor at low temperatures, it rapidly and continuously grows up to the
values of the order 105–106 during the laser pulse (for the maximum concentration of created
carriers 1018–1019 cm−3 and the mobility b = 3 × 106 CGS units = 1 m2 V−1 s−1), returning
to zero after the recombination time. Therefore, the standard quantization scheme used in
[6, 8, 10–13], based on the assumption of unitary evolution of the quantum system, does not
work in the case of strongly dissipative ‘effective mirrors’, and one needs its generalization.

The aim of this paper is to give realistic estimations of the number of photons which
could be produced inside the cavity with a semiconductor time-dependent ‘mirror’ and to find
optimal values of different parameters which influence the rate of photon generation, such
as the energy and periodicity of laser pulses, the recombination time and the dimensions of
the cavity. In section 2, we present the simplest quantum model of the effect and obtain the
general formula (11) for the number of created photons, which takes into account the losses
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and detuning from the strict resonance, generalizing the results obtained recently in [3, 16]. In
section 3, we derive a simple approximate analytical formula for the time dependence of the
effective complex frequency of the field mode during the process of excitation–recombination
in the case of short laser pulses and high absorption coefficient of the semiconductor slab.
Surprisingly, this formula does not depend on the field geometry (TE or TM modes), except
for some scaling factor. In the concluding section 4, we evaluate the expected values of the
photon generation rate and find the optimal values of parameters. We also discuss briefly
possible spurious effects, emphasizing the importance of precise knowledge of the resonance
periodicity of pulses.

2. The model of a quantum nonstationary damped oscillator

It is well known that the electromagnetic field in a cavity formed by ideal mirrors and filled
with a dielectric medium without losses can be described in terms of an infinite set of uncoupled
harmonic oscillators (which represent the amplitudes of the normal field modes), provided the
geometry is fixed and the properties of the medium do not depend on time. If the boundaries
can move (remaining ideal ones) or the parameters of the (lossless) dielectric medium can
change with time, then the dynamics of the field can be described in terms of coupled
oscillators with time-dependent frequencies and coupling coefficients, which are determined
by the instantaneous geometry and properties of the medium [8, 17] (for a complete list of the
relevant references, see [2, 3]).

In a generic case, all modes interact, but the number of generated quanta in each mode
is extremely small in the realistic case of small variations of the parameters. An important
exception is the case of resonance, when the parameters oscillate with the frequency ωR , which
is close to twice the frequency 2ω0 of some mode. For harmonic oscillations of the boundary,
it was shown in [6, 8, 11–13] that if the spectrum of unperturbed field eigenmodes does not
contain equidistant parts (i.e., ωR is not close to the difference between some eigenfrequencies),
then the interaction between modes is strongly suppressed in the long-time limit, so that its
influence on the dynamics of the resonance mode can be neglected. We suppose that the
model of a one-dimensional quantum oscillator with a time dependent frequency can be used
for arbitrary periodical changes of the cavity parameters, if the periodicity of these changes
T is close to a multiple of the period of field oscillations in the selected mode T0 = 2π/ω0.
In this case, the parametric excitation can be achieved due to the presence of harmonics of
the fundamental exciting frequency 2π/T . However, no harmonics should be close to the
difference |ωj − ωk| between the frequencies of the j th and kth modes, in order to avoid the
interaction between these modes.

Considering a cavity with an effective semiconductor time-dependent ‘mirror’, one must
take into account that the ‘instantaneous’ frequency of the cavity mode is a complex function
of time �(t) = ω(t) − iγ (t), where the imaginary part γ (t) can be interpreted as the
amplitude-damping coefficient. Thus, we arrive at the problem of correct description of a
quantum-damped oscillator with arbitrary time-dependent frequency and damping coefficient.
Since damping implies the appearance of the ‘width’ of the frequency ωk of the kth mode,
which has an order of γk , the condition of absence of resonances between the kth and j th
modes and the nth harmonics of the periodical changes of parameters can be written as
|ωj − ωk − 2πn/T | > γk + γj , and we suppose that it is satisfied for all integers k �= j and n.

We follow the phenomenological ‘minimal noise’ model, proposed recently in [16]. It is
based on the Heisenberg–Langevin equations

dx̂/dt = p̂ − γ (t)x̂ + F̂ x(t), dp̂/dt = −γ (t)p̂ − ω2(t)x̂ + F̂ p(t), (2)
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where x̂ and p̂ are the dimensionless quadrature operators of the selected mode, normalized
in such a way that the mean number of photons equals N = 1

2 〈p̂2 + x̂2 − 1〉 (in particular,
we put h̄ = 1), whereas F̂ x(t) and F̂ p(t) are noncommuting delta-correlated noise operators
(but they commute with x̂ and p̂)

〈F̂ j (t)F̂ k(t
′)〉 = δ(t − t ′)χjk(t), j, k = x, p, (3)

χxp(t) = −χpx(t) = iγ (t), χpp(t) = χxx(t) = γ (t)G, G = 1 + 2〈n〉th. (4)

The symbols ω and γ mean the frequency and damping coefficient normalized by the initial
frequency ωi , and 〈n〉th is the equilibrium mean number of photons for the selected mode. The
choice of coefficients in (2) and (4) was explained and justified in [16].

The solution of the system of equations (2) under condition (3) can be expressed in terms
of the function ε(t), which satisfies the classical equation of motion of the harmonic oscillator
with time-dependent frequency

ε̈ + ω2(t)ε = 0 (5)

and the initial condition ε(t) = exp(−it) for t → −∞. Note that ε(t) does not depend on
the damping coefficient γ (t). This coefficient enters the solutions x̂(t) and p̂(t) through the
integral �(t) = ∫ t

−∞ γ (τ) dτ . It can be shown [16] that if initially (at t → −∞) the field
mode was in the thermal state, then at the moment t > 0 the mean number of photons equals

N (t) = G e−2�(t)

{
1

2
E(t) +

∫ t

−∞
dτ e2�(τ)γ (τ )(E(t)E(τ) − Re[Ẽ∗(t)Ẽ(τ )])

}
− 1

2
, (6)

where

E(τ) = 1
2 [|ε(τ )|2 + |ε̇(τ )|2], Ẽ(τ ) = 1

2 [ε2(τ ) + ε̇2(τ )]. (7)

Formula (6) is exact for arbitrary functions ω(t) and γ (t). However, we are interested
here in the special case when the functions ω(t) and γ (t) have the form of periodical pulses,
separated by intervals of time with ω = 1 and γ = 0 (we neglect the damping of the field
between pulses, supposing that the quality factor of the cavity is big enough). Since the relative
change of the frequency ω(t) during pulses is very small, the functions E(τ) and Ẽ(τ ) can
be considered as approximate integrals of motion during each pulse. Then after n pulses, we
have [16]

Nn = G

2
e−2�n

{
En + (1 − e−2�)

n∑
k=1

e2�k[EnEk − Re(Ẽ∗
nẼk)]

}
− 1

2
, (8)

where � = ∫
γ (τ) dτ , the integral being taken over the duration of a single pulse. The

quantities Ek and Ẽk mean the values of E(τ) and Ẽ(τ ) at the end of the kth pulse.
In the interval between the kth and (k + 1)th pulses the function ε(t) can be written as
εk(t) = ak e−it + bk eit (with a0 = 1 and b0 = 0), so that Ek = |ak|2 + |bk|2 and Ẽk = 2akbk .
Now we notice that if ε(t) = e−it before the ‘effective potential barrier’ Veff(t) = ω2(t) − 1,
then after the ‘barrier’ the solution can be written as ε(t) = ρ− e−it + ρ+ eit , so that the
ratio r = ρ+/ρ− can be interpreted as the effective complex amplitude-reflection coefficient,
whereas the complex number ρ− = f has the meaning of the inverse amplitude-transmission
coefficient. An important additional parameter is the periodicity of pulses T (or the related
phase shift θ = ω0T in the dimensional units). All complex coefficients ak and bk can be
easily expressed in terms of the complex parameters r and f ≡ |f | exp(iϕ) and real parameter
T with the aid of the transfer matrix method [3, 18]

an = f
sinh(nν)

sinh(ν)
e−iT (n−1) − sinh[(n − 1)ν]

sinh(ν)
e−iT n, bn = rf

sinh(nν)

sinh(ν)
eiT (n−1), (9)
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where the new coefficient ν is determined by the relations

cosh(ν) = |Re[f exp(iT )]| ≡ |f cos(δ)|, δ = T − Tres, Tres = mπ − ϕ. (10)

Then the summation in equation (8) is reduced to calculating several finite geometric
progressions. After some algebra one can arrive at the following formula for the mean
number of quanta created after n pulses (we assume that coefficient ν is real):

Nn = G|rf |2 exp(−�)

4 sinh(ν)

[
exp[2n(ν − �)]

sinh(ν − �)
+

exp[−2n(ν + �)]

sinh(ν + �)

]

+
G − 1

2
− G|rf |2[1 + exp(−2�)]

4 sinh(ν − �) sinh(ν + �)
. (11)

We see that photons can be generated if ν > �. Under realistic experimental conditions,
the parameters |r| and � are very small. Moreover, the parameter ν can be real only if
the detuning coefficient δ is also small. Then one finds from (10) that ν ≈

√
|r|2 − δ2.

Formula (11) can be simplified in the asymptotical regime n(ν − �) � 1

Nn ≈ G|r|2
4ν(ν − �)

exp[2n(ν − �)] +
G − 1

2
. (12)

(we assume that the difference (ν −�) is not too close to zero). The rate of photon generation
is maximal for δ = 0, i.e. under the condition of exact resonance, when the periodicity of
pulses T coincides with Tres (only this case was considered in [3, 16]). In the dimensional
variables, we have

Tres = 1
2T0(m − ϕ/π), (13)

where T0 is the period of oscillations in the field mode. There is no photon generation if the
detuning coefficient exceeds the critical value δmax =

√
|r|2 − �2.

3. Time-dependent shift of effective complex frequency: TE versus TM modes

For small variations of the effective frequency ω(t), we can write ω(t) = ω0[1 + χ(t)] with
|χ | � 1. Then using the formulae from [19], we can express the absolute value of the
single-barrier amplitude-reflection coefficient |r| and the phase ϕ of the single-barrier inverse
transmission coefficient f as [20] (here we return to the dimensional variables)

|r| ≈
∣∣∣∣
∫ tf

ti

ω0χ(t) e−2iω0t dt

∣∣∣∣ , ϕ ≈ ω0

∫ tf

ti

χ(t) dt, (14)

where ti and tf correspond to the beginning and end of the pulse. For the harmonic oscillations
at the double frequency χ(t) = χ0 sin(2ω0t) with ti = 0 and tf = π/ω0, we have ϕ ≡ 0.
Then (13) becomes the usual parametric resonance condition T = T0/2. In this case, equation
(12) coincides with the result obtained in [9]. For other shapes of the function χ(t), some fine
tuning of the period between pulses T must be made, taking into account the concrete value
of the phase shift ϕ.

To calculate the values of the parameters |r| and ϕ which can be obtained in the case
of a semiconductor mirror, we consider a cylindrical cavity with an arbitrary cross section
and the axis parallel to the x-direction. We assume that the main part of the cavity is empty:
ε(x) ≡ 1 for −L < x < 0, but there is a thin slab of a semiconductor material with ε(x) �= 1
in the region 0 < x < D � L. We start from the Maxwell equations, which do not
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contain derivatives of function ε(r, t) with respect to the time variable: rot B = ∂D/(c∂t) and
rot(D/ε) = −∂B/(c∂t) (we consider non-magnetic media). Excluding the magnetic field B,
we obtain the equation for the monochromatic field D(r, t) = D(r) exp(−i�t)

grad div(D/ε) − �(D/ε) = (�2/c2)D. (15)

For TE modes, vectors E and D are perpendicular to the x axis (and parallel to plane
surfaces of the cylinder and slab). If we assume that the dielectric permeability depends
only on the longitudinal space variable x, then div(D/ε) = [ε(x)]−1 div D ≡ 0, because all
differentiations are made with respect to the transversal coordinates. Thus, the electric field
E = D/ε(x) satisfies the Helmholtz equation �E + (�/c)2ε(x)E = 0, which allows for a
factorization of any scalar component E(x, r⊥) = ψ(x)�(r⊥),

ψ ′′ +
[
(�/c)2ε(x) − k2

⊥
]
ψ = 0, �⊥� + k2

⊥� = 0. (16)

The solution to (16) in the region −L < x < 0, satisfying the boundary condition
ψ(−L) = 0, is ψ(x) = F1 sin[k(x + L)], where the constant coefficient k is related to
the field eigenfrequency � and the corresponding wavelength in vacuum λ as

� = c
(
k2 + k2

⊥
)1/2

, λ = 2π
(
k2 + k2

⊥
)−1/2

. (17)

Since the electric field and its derivative in the x-direction must be continuous at the surface
x = 0, the admissible values of the parameter k can be determined from the condition of the
continuity of the logarithmic derivative of ψ(x) at x = 0

tan(kL) = kψ+(0; k)/ψ ′
+(0; k), (18)

where ψ+(x; k) is the solution of equation (16) in the region 0 < x < D, satisfying the
boundary condition ψ+(D) = 0. In the generic case (18) is a complicated transcendental
equation, which can be solved only numerically. But for a thin layer, D � λ ∼ L, the
value of k must be close to π/L (we consider the lowest mode in the cavity). Thus, we can
write k = (1 + ξ)π/L with |ξ | � 1 and replace tan(πξ) in the left-hand side of (18) simply
by πξ . Moreover, in the first approximation we can identify k with π/L in the right-hand
side. Introducing the dimensionless variable x̃ = x/D (so that 0 � x̃ � 1) and the function
R(x̃) = ψ+(x̃)/ψ ′

+(x̃), we find ξTE = R(0)�η, where

η = λ/(2L) < 1, � = 2D/λ � 1 (19)

and the function R(x̃) satisfies the first-order nonlinear generalized Riccati equation

dR/dx̃ = 1 + π2�2[ε(x̃) − 1 + η2]R2 (20)

with the boundary condition R(1) = 0.
In the TM case, the electric induction vector D can be expressed as D = D‖e1 +D⊥. Using

the equation div D ≡ ∂D‖/∂x + ∇⊥ · D⊥ = 0, one has div(D/ε) = D‖∂(1/ε)/∂x. Factorizing
the longitudinal component as D‖ = ψ(x)�(r⊥), we obtain from (15)

ψ ′′ +
[
(�/c)2ε(x) − k2

⊥
]
ψ − [ε′(x)/ε(x)]ψ ′ = 0, �⊥� + k2

⊥� = 0. (21)

The function ε′(x) is the derivative of ε(x). At the interface x = 0, we have the continuity
conditions D‖(0−) = D‖(0+) and ε−1∂D‖/∂x|0− = ε−1∂D‖/∂x|0+. At the metallic plane
surfaces we have the boundary conditions ∂D‖/∂x|x=−L,D = 0. Thus we have now
ψ(x) = F1 cos[k(x + L)] for −L < x < 0, so that the parameter k should be determined
from the equation tan(kL) = −ψ ′

+(0; k)/[ψ+(0; k)kε(0+)]. Writing again k = π(1 + ξ)/L

and using the same approximation as in the TE case, we can write the small shift of the wave
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number as ξTM = S(0)�/η, where the function S(x̃) = −[(π�)2ε(x̃)]−1ψ ′/ψ satisfies the
generalized Riccati equation (in the domain 0 < x̃ < 1)

dS/dx̃ = 1 − (1 − η2)/ε(x̃) + (π�)2ε(x̃)S2. (22)

In semiconductors, the real part of the dielectric function ε1 is of the order of 10 or bigger.
Therefore, the functions R(x̃) and S(x̃) practically coincide, because they satisfy the same
boundary condition R(1) = S(1) = 0, whereas two slightly different equations (20) and (22)
can be replaced by the unique equation

dR/dx̃ = 1 + (π�)2ε(x̃)R2, (23)

if one neglects the term (1 − η2)/ε(x̃), whose relative contribution is much less than 0.1
(especially for excited semiconductors with large imaginary part of the dielectric function).

Due to equation (17), the small relative shift of the resonance frequency is related to
the shift of the longitudinal wave number ξ as χ� ≡ [� − ω0]/ω0 = η2(ξ − ξ0), where ξ0

corresponds to the non-excited semiconductor slab. Therefore, the shifts of eigenfrequencies
of the TE and TM modes differ only by the factor η2

χ = ηκ� [R(0) − R0(0)] , κTM = 1, κTE = 3. (24)

The value R0(0) corresponds to the non-excited semiconductor with ε2 = 0. Since η < 1,
the frequency shift and the photon generation rate for TM polarization are always bigger than
for TE. This conclusion agrees with those of [17] (for an ideal time-dependent dielectric slab)
and [11, 20] (for cavities with oscillating ideal metallic boundaries).

For an arbitrary function ε(x̃), equations (20) and (22) or their unified version (23) should
be solved numerically. However, in the specific case of a photo-excited semiconductor with
rapidly decreasing large imaginary part ε2(x̃), we can obtain a simple approximate analytical
solution. Let us consider equation (23). If ε2(x̃) = 0 and ε1(x̃) = const, it has the exact
solution R0(x̃) = tan[a(x̃ − 1)]/a, where a = π�

√
ε1. Since ε1 ∼ 10 for semiconductors,

a < 0.1 if � � 0.01. Consequently, R0(0) ≈ −1, with the error of the order of 0.01 or
smaller. When the semiconductor slab is illuminated by the laser pulse, ε(x̃) = ε1 + iε2(x̃),
where the imaginary part ε2(x̃) can attain very high values, so that π2�2ε2(x̃) � 1 in some
region 0 < x̃ < h near the surface of the slab (otherwise we cannot simulate the displacement
of the effective boundary). It is important that h � 1, because the carriers are created in
the thin layer of the depth α−1, where α is the absorption coefficient of the laser radiation.
Obviously, to create an effective ‘plasma mirror’ one needs the material with h ∼ α−1 � 1.
In the region 0 < x̃ < h, we can neglect the first term 1 in the right-hand side of equation
(23), as well as the real part of the coefficient at R2 (because ε1 after the excitation of the
semiconductor is practically the same as before it, as long as the plasma frequency of the
carriers remains much smaller than optical frequencies). The simplified equation yields

1

R(0)
− 1

R(h)
= i(π�)2

∫ h

0
ε2(x̃) dx̃. (25)

On the other hand, in the region h < x̃ < 1 the nonlinear term in (23) becomes insignificant, so
that we can write R(1)−R(h) = 1 −h. Since R(1) = 0 and h � 1, we can take R(h) = −1.
Moreover, since the function ε2(x̃) quickly goes to zero outside the interval (0, h), we can
extend the upper limit of integration in (25) to infinity. Thus we have R(0) = (iA − 1)−1 and
finally

χ� ≡ χ − iγ = ηκ�
A2 − iA

A2 + 1
, χ = ηκ�

A2

A2 + 1
, γ = ηκ�

A

A2 + 1
, (26)
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where κ = 3 for the TE mode and κ = 1 for the TM mode. The coefficient A equals

A = (π�)2
∫ ∞

0
ε2(x̃) dx̃. (27)

We have inspected the solution (26), solving the Riccati equation (23) numerically for two
dielectric functions ε(x̃) = 10 + iB exp(−αx̃) (in this case equation (16) can be solved
analytically in terms of Bessel functions [20]) and ε(x̃) = 10 + iB cosh−2(αx̃) with different
parameters B and α. The coefficient A (27) in both cases equals B/α. For α = 100, the
relative difference between the numerical solutions and analytical expressions in (26) was less
than 0.001 for any value B > 100 (for both functions). A difference at the level of a few per
cent was noticed only for values α < 10. These results show that the approximation (26) is
very good indeed.

The function ε2(x̃) is proportional to the concentration of carriers inside the slab,
which is governed by the equations, which take into account, besides the photo-absorption,
different recombination processes. For highly doped semiconductors, when the trap-assisted
recombination prevails over other recombination mechanisms, a good approximation is the
linear equation [3]

∂n/∂t = ∇ · (Y∇n) + (αζ/Eg)I (t) e−αx − β1n, (28)

where Y is the coefficient of ambipolar diffusion, α is the absorption coefficient of the laser
radiation inside the layer, Eg is the energy gap of the semiconductor (which is close to the
energy of laser photons), I (t) is the time-dependent intensity of the laser pulse which enters
the slab, ζ � 1 is the efficiency of the photo-electron conversion, and β1 is the trap-assisted
recombination coefficient. According to equations (26) and (27), we need only the time-
dependent integral value K(t) = ∫ ∞

0 n(x, t) dx (we consider the case of high absorption
coefficient, where the integration over the slab can be extended to infinity with very small
error). Integrating equation (28) over dx from 0 to ∞ and taking into account the boundary
condition Y (∂n/∂x)|x=0 = 0 (this means that we neglect the surface recombination), we
obtain the equation ∂K/∂t = (ζ/Eg)I (t) − β1K, which can be integrated immediately:
K(t) = (ζ/Eg)

∫ t

0 exp[−β1(t − τ)]I (τ ) dτ . If the duration of the laser pulse is much less than
the recombination time, then

K(t) = ζW

EgS
e−β1t , W/S =

∫ ∞

−∞
I (τ ) dτ, (29)

where W is the total energy of the laser pulse and S is the area of the surface of the
semiconductor slab (it is assumed that the energy is distributed uniformly over this area).
Combining equations (27) and (29) with the relation σ(x, t) = n(x, t)|eb|, where e is the
electron charge and b is the total mobility of carriers (for each electron–hole pair), we can
write the time-dependent function A(t) in equation (26) as

A(t) = A0 e−β1t , A0 = 4π2|eb|ζW�/(cEgS). (30)

4. Discussion of numerical values and optimal parameters

According to equation (12), the rate of photon generation is determined by the difference
(ν − �). Using the analytical expression for γ (t) from (26) and (30), one can calculate
the integral for � exactly (assuming that the period between pulses T is much bigger than
the relaxation time Tr = β−1

1 and extending the integration interval to infinity). Let us
consider first the case of strict resonance (13), when ν = |r|. Due to equations (14) and
(26), both coefficients |r| and � are proportional to the product ηκ�. Therefore the number
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of photons generated after n � 1 pulses is proportional to exp[2nηκ�F(A0, Z)], where
Z = ω0/β1 = 2πTr/T0 and

F(A0, Z) = Z

2

∣∣∣∣
∫ ∞

0

A2
0 exp(−iZτ) dτ

A2
0 + exp(τ )

∣∣∣∣ − Z tan−1(A0). (31)

A detailed numerical analysis of the amplification coefficient F(A0, Z) was made in [3]. It
appears that the generation of photons is absolutely impossible (i.e., F < 0) if Z > 0.54
or A0 < 4. For moderate values of parameter A0, the maximal values of F are achieved
for Z ≈ 0.3. This dimensionless value corresponds to the recombination time Tr ≈ 20 ps
for T0 = 400 ps (or f0 = 2.5 GHz). The parameter A0 is proportional to the energy
of the laser pulse W . If we fix the number of photons which should be created after
n pulses, then n ≈ const/F . Consequently, the function B0(A0, Z) = A0/F (A0, Z) is
proportional to the total energy of all necessary laser pulses. Choosing for each value of A0,
the optimal value of the parameter Z (when F(A0, Z) attains its local maximum as a function
of Z) we have found that the minimum of function B0(A0, Z) happens at A0∗ ≈ 10, when
F∗ = 0.18, |r∗| = 0.61ηκ� and �∗ = 0.43ηκ�. We see that the ratio �∗/|r∗| ≈ 0.7 is
rather high, so that neglecting the effect of damping would result in a significant error. For the
geometry reported in [15], i.e. D = 0.6 mm, S = 7 × 2 cm, λ = 12 cm (or f0 = 2.5 GHz),
we obtain, taking in formula (30) a typical value of mobility b = 3 × 106 CGS units =
1 m2 V−1 s−1, Eg = 1.4 eV (as for GaAs) and ζ = 1, that A0 = 10 for W ∼ 2 × 10−3 J.
The resonance mode of the rectangular cavity described in [15] has TE polarization with
� = 0.01 and η = 0.55 (L = 110 mm), so that η3 = 0.16. Then, putting in formula (12)
G = 1 and optimal values of A0 and Z, we find that N3 = 103 photons can be created after
n3 ≈ 12 000 pulses. Taking the periodicity of pulses T ≈ T0/2 = 200 ps, the total duration of
the process must be Ttot ∼ 2 µs, which means that the cavity quality factor must be higher than
Qmin = πTtot/T0 ≈ πn/2 ∼ 2 × 104, which can be easily achieved. The problem is that the
total energy of all pulses must be about 20 J, and this value seems to be too high (because this
energy will heat the semiconductor after the recombination, so it must be quickly removed).
One way to diminish the energy of laser pulses is to search for semiconductors with higher
mobility of carriers (because parameter A0 is proportional to the product W |b|). The maximal
mobility in GaAs, reported in the available literature, can exceed 100 m2 V−1 s−1. It is not
clear, however, whether such big values are compatible with small recombination times, which
are achieved by means of strong doping.

An optimization of geometry could also help. Indeed, the resonance wavelength λ corre-
sponding to the mode TE101 of the rectangular cavity is related to the cavity length L and the
biggest transverse dimension B as λ = 2LB/

√
L2 + B2. Consequently, B = λ/(2

√
1 − η2).

For the fixed values of parameter A0 and the smallest transverse dimension, the energy of the
pulse is proportional to the area of the surface, i.e. B, whereas the necessary number of pulses
depends on L as η−3 ∼ L3. Consequently, the total energy is proportional to the product BL3.
Minimizing this product for the fixed value of λ (which is equivalent to maximization of the
function η3

√
1 − η2), we find the optimal value ηTE

opt = √
3/2 = 0.866, which corresponds

to L = λ/
√

3 ≈ 7 cm and B = λ = 12 cm. This choice could diminish the total energy
by 2.5 times and the number of pulses by almost four times, at the expense of increasing the
energy of each pulse by approximately two times. Besides, one can increase the generation
rate, increasing the thickness D of the slab (remember that � = 2D/λ).

In cavities with the same geometry, the rate of generation is higher for the TM modes
than for TE ones, because the frequency shift χ is proportional to the factor η instead of
η3. Unfortunately, there exist no TM modes whose eigenfrequencies depend only on one of
two transverse dimensions. Therefore, the semiconductor slab must have two sides bigger
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than λ/2 = 6 cm. The optimal geometry in this case (TM111 mode) has a quadratic cross
section (for rectangular cavities; the results for circular cross sections are practically the same),
and the parameter η can be found from the maximization of the function η(1 − η2), which
yields ηTM

opt = 1/
√

3 ≈ 0.58. This value corresponds to a cubical cavity with the length
L = 104 mm. The transverse area in such a case must exceed 100 cm2, which is so great
that the total energy of 3300 pulses, necessary to create 1000 photons, is five times bigger
than for the optimized TE101 mode. Moreover,

(
ηTE

opt

)3/
ηTM

opt = 9/8, so the generation of the
same number of photons in the optimized TE101 mode requires 10% fewer pulses than in the
optimized TM111 mode. Note that we suppose that the whole surface of the slab is illuminated
uniformly. This can be a difficult technical problem. Therefore, it would be extremely
important to calculate the time-dependent complex frequency shift of the selected mode in
the case of nonuniform illumination, in particular, when only some central part of the slab is
illuminated.

The numerical values of the necessary number of pulses and the total energy, given above,
may seem disappointing. Note, however, that they correspond to the case of the initial vacuum
state. As a matter of fact, preparing the field mode in the initial vacuum state can be a nontrivial
problem in itself, because the equilibrium mean number of quanta with frequency ν =
2.5 GHz at the helium temperature � = 4 K equals 〈n〉th ≈ kB�/hν ≈ 35 (we take into
account that kB� � hν). On the other hand, the parametric amplification of the number
of photons from the initial thermal state can be an easier task [10]. Indeed, in this case the
G-factor in formula (12) equals G = 70, and this high initial value reduces the necessary
number of pulses (for N3 = 1000) to nth

3 ≈ 5000 for η = 0.55 and to nth
3 ≈ 1200 for the

optimized cavity with η = 0.866. The total energy in the optimal case can be reduced to about
3 J. Moreover, one could try first to work at higher temperatures. For example, taking � =
20 K (when Nb is still a superconductor, so that the cavity does not lose its high quality
factor) we have 〈n〉th ≈ 170. Then N3 = 103 photons can be generated after only about
500 pulses for the optimized geometry. Another possible advantage of working at higher
temperatures could be higher mobility of carriers: due to the low-temperature dependence
b ∼ �+3/2, the increase of temperature from 4 K to 20 K can increase the mobility by ten
times.

The level of N3 = 103 generated photons corresponds to the presumed sensitivity of the
measuring apparatus, and it is significantly bigger than the mean number of thermal photons
and their fluctuations in the selected cavity mode in the examples considered. Note that the
total energy of laser pulses of the order of a few Joules corresponds to about 1020 photons
entering the cavity. Although the main part of them will be absorbed by the semiconductor
slab, some portion will be reflected from the surface. Therefore, one could worry about the
noise from these laser photons. However, they have frequencies in the visible or near infrared
band, whereas the measuring apparatus is supposed to be sensitive only to the frequencies
near the resonance cavity frequency (2.5 GHz). These five orders of magnitude separating
the frequencies of laser and ‘Casimir’ photons, seem to be a safe guarantee of the absence of
additional laser noise. Besides, since the laser light is supposed to enter the cavity through a
thin optical fibre, no photons with wave length exceeding a few millimetres (the diameter of
the fibre) will be transmitted through this optical waveguide.

However, we would like to emphasize once more time the importance of taking into
account the correct value of the phase shift ϕ in the resonance conditions (10) and (13). It
can be calculated exactly from equations (14), (26) and (30): ϕ = (Z/2)ηκ� ln

(
1 + A2

0

)
.

Thus for A0 = 10 and Z = 0.3, we have ϕ ≈ 0.7ηκ�. Under the same conditions, the
critical detuning equals δmax ≈ 0.7|r| ≈ 0.4ηκ� ≈ ϕ/2. Consequently, taking T = T0/2
exactly, one certainly will be out of the resonance, and no photons will be generated! On the
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other hand, one could use the off-resonance sequence of pulses in order to measure the noise
level.
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